top of page

Case Studies

logo

A retailer’s Dilemma of Unlocking Data Potential in Wireless Retail

In the US, many retail dealers operate under various wireless carriers to drive device and service sales. These dealers sell using tools offered by the carrier and some third-party tools. Sprint was one such carrier whose dealers faced challenges due to underutilized data and recurring issues of chargebacks, lease frauds, and transactional discrepancies.

logo

Navigating Transaction Complexities in Wireless Retail

Improving transaction processing in terms of time and accuracy

Flagging transactions with potential fraud or discrepancies

Making the analysis actionable for decision-making and recording

Providing holistic access to transactions across the organization

A 72-Hour Miracle- Transforming the Operations with AI-Driven Auditing

Created a robust data engineering pipeline using RPA

and Python scripts to fetch data from multiple sources and ingest it into a data warehouse.

Built data transformers to parse and process data for proper conversion between changing formats.

Implemented email bounce analysis and robocalling to verify fraudulent transactions.

Implemented a rule-based AI (GOFAI) engine to flag discrepancies, frauds, and assess refunds and chargebacks.

Developed a platform for auditors, management, and employees to track the transaction vetting process and actions taken based on insights.

Comprehensive Auditing & Actionable Insights Driving $1M in Savings

Data aggregation from multiple sources

Data quality enhancement with missing data handling

Robust process to handle changing requirements

Accurate commission reconciliation

Actionable insights and tracking for remedial actions

logo
logo

Measurable Results and Impact

Achieved client cost savings exceeding $1 million within 1.5 years

Enabled detection of both intentional and unintentional losses by employees

Reduced fraud and discrepancy detection time from 4 weeks to 72 hours

Key Achievements

Developed a robust data engineering pipeline and AI-powered auditing platform

Integrated multiple data sources and handled changing data formats

Provided actionable insights and enabled tracking of remedial actions

Achieved significant cost savings and reduced fraud detection time

logo
Stripes

Conclusion

Through our AI-driven sales auditing and transaction monitoring platform, we empowered retail dealers to streamline their operations, improve transaction processing accuracy, and detect frauds and discrepancies efficiently. The platform’s ability to aggregate data, enhance data quality, and generate actionable insights led to substantial cost savings, reduced fraud detection time, and improved overall operational efficiency.

bottom of page